色偷偷偷亚洲综合网另类,亚洲欧美另类在线观看,欧美午夜激情在线,久久久精品一区

當前位置:首頁 > 學習資源 > 講師博文 > 在深度學習中使用Dropout技術的動機和它如何防止過擬合

在深度學習中使用Dropout技術的動機和它如何防止過擬合 時間:2025-01-17      來源:華清遠見

一、什么是過擬合?

過擬合(overfitting)是指深度學習中選擇的模型所包含的參數過多(即模型容量很大),以至于出現這一模型對已知數據預測得很好,但對未知數據預測得很差的現象。

下圖是過擬合的例子,曲線很好的擬合了樣本,跟樣本非常重疊,同樣樣本中的噪聲數據也被擬合了,噪音數據影響了模型訓練。

二、什么是Dropout?

Srivastava等大牛在2014年的論文《Dropout: A Simple Way to Prevent Neural Networks from Overfitting》提出了Dropout正則化:

Dropout的表示每次訓練時隨機忽略一部分神經元,這些神經元dropped-out了。換句話講,這些被dropped-out的神經元在正向傳播時當前神經元權重值相當于為0,對后面層的神經元的影響被忽略,反向傳播時也不會更新其權重。

三、Dropout技術的動機?

Dropout技術的主要動機是防止神經網絡在訓練過程中,訓練數據過擬合。Dropout通過隨機丟棄一部分神經元,使得模型在每次迭代中使用不同的神經元組合進行計算,從而減少模型對某些神經元的依賴,增強模型的泛化能力‌。

四、Dropout如何防止過擬合?

1. 減少神經元之間的相互依賴:由于每次迭代都會隨機丟棄一些神經元,所以網絡不能過度依賴任何一個特定的神經元。這使得網絡能夠學習到更獨立、更魯棒的特征表示。

2. 增加模型的泛化能力:由于 dropout 引入了隨機性,所以每次迭代都在訓練一個略有不同的網絡。還學習到了如何適應新的、未見過的數據。這有助于提高模型的泛化能力。

3. 模擬集成學習:Dropout 可以看作是一種集成學習方法。每次迭代都在訓練一個略有不同的網絡,這些網絡可以看作是對原始網絡的不同“猜測”。在測試階段,我們實際上是在平均所有“猜測”的結果,這通常比單一網絡的結果要好。

上一篇:C語言-變量存儲方式

下一篇:如何使用振蕩器和時鐘在微控制器中產生可靠的時序

戳我查看嵌入式每月就業風云榜

點我了解華清遠見高校學霸學習秘籍

猜你關心企業是如何評價華清學員的

干貨分享
相關新聞
前臺專線:010-82525158 企業培訓洽談專線:010-82525379 院校合作洽談專線:010-82525379 Copyright © 2004-2024 北京華清遠見科技發展有限公司 版權所有 ,京ICP備16055225號-5京公海網安備11010802025203號

回到頂部

色偷偷偷亚洲综合网另类,亚洲欧美另类在线观看,欧美午夜激情在线,久久久精品一区
主站蜘蛛池模板: www日韩欧美| 色综合久综合久久综合久鬼88| 亚洲成人精品av| 亚洲国产天堂久久国产91| 亚洲成人av片| 亚洲欧洲在线观看| 主播福利视频一区| 精品中文字幕在线2019| 欧美成人免费在线观看| 欧美午夜影院在线视频| 久久免费精品日本久久中文字幕| 久久久欧美精品| 国产精品av电影| 欧美裸体xxxx| 国产日韩欧美影视| 欧美另类xxx| 91久久久久久久久久久久久| 欧美成人合集magnet| 国产欧美日韩视频| 大胆欧美人体视频| 成人激情在线播放| 欧美性开放视频| 日韩精品在线免费观看视频| 韩国视频理论视频久久| 国产亚洲精品一区二555| 欧美在线视频a| 伊人久久大香线蕉av一区二区| 日韩av免费看| 久久国产精品视频| 亚洲国产成人久久综合一区| 国内成人精品一区| 一区二区三区 在线观看视| 国产精品黄页免费高清在线观看| 欧美成人精品一区二区| 亚洲福利视频专区| 欧美自拍大量在线观看| 欧美成人激情视频免费观看| 亚洲欧美日韩精品久久奇米色影视| 日韩a**中文字幕| 精品中文字幕视频| 一区二区三区日韩在线|